Системы линейных однородных уравнений - имеет вид ∑a k i x i = 0. где m > n или m Однородная система линейных уравнений всегда совместна, так как rangA = rangB . Она заведомо имеет решение, состоящее из нулей, которое называется тривиальным .

Назначение сервиса . Онлайн-калькулятор предназначен для нахождения нетривиального и фундаментального решения СЛАУ. Полученное решение сохраняется в файле Word (см. пример решения).

Инструкция . Выберите размерность матрицы:

Свойства систем линейных однородных уравнений

Для того чтобы система имела нетривиальные решения , необходимо и достаточно, чтобы ранг ее матрицы был меньше числа неизвестных.

Теорема . Система в случае m=n имеет нетривиальное решение тогда и только тогда, когда определитель этой системы равен нулю.

Теорема . Любая линейная комбинация решений системы также является решением этой системы.
Определение . Совокупность решений системы линейных однородных уравнений называется фундаментальной системой решений , если эта совокупность состоит из линейно независимых решений и любое решение системы является линейной комбинацией этих решений.

Теорема. Если ранг r матрицы системы меньше числа n неизвестных, то существует фундаментальная система решений, состоящая из (n-r) решений.

Алгоритм решения систем линейных однородных уравнений

  1. Находим ранг матрицы.
  2. Выделяем базисный минор. Выделяем зависимые (базисные) и свободные неизвестные.
  3. Вычеркиваем те уравнения системы, коэффициенты которых не вошли в состав базисного минора, так как они являются следствиями остальных (по теореме о базисном миноре).
  4. Члены уравнений, содержащие свободные неизвестные, перенесем в правую часть. В результате получим систему из r уравнений с r неизвестными, эквивалентную данной, определитель которой отличен от нуля.
  5. Решаем полученную систему методом исключения неизвестных. Находим соотношения, выражающие зависимые переменные через свободные.
  6. Если ранг матрицы не равен количеству переменных, то находим фундаментальное решение системы.
  7. В случае rang = n имеем тривиальное решение.

Пример . Найти базис системы векторов (а 1 , а 2 ,...,а m), ранг и выразить векторы по базе. Если а 1 =(0,0,1,-1), а 2 =(1,1,2,0), а 3 =(1,1,1,1), а 4 =(3,2,1,4), а 5 =(2,1,0,3).
Выпишем основную матрицу системы:


Умножим 3-ую строку на (-3). Добавим 4-ую строку к 3-ой:
0 0 1 -1
0 0 -1 1
0 -1 -2 1
3 2 1 4
2 1 0 3

Умножим 4-ую строку на (-2). Умножим 5-ую строку на (3). Добавим 5-ую строку к 4-ой:
Добавим 2-ую строку к 1-ой:
Найдем ранг матрицы.
Система с коэффициентами этой матрицы эквивалентна исходной системе и имеет вид:
- x 3 = - x 4
- x 2 - 2x 3 = - x 4
2x 1 + x 2 = - 3x 4
Методом исключения неизвестных находим нетривиальное решение:
Получили соотношения, выражающие зависимые переменные x 1 ,x 2 ,x 3 через свободные x 4 , то есть нашли общее решение:
x 3 = x 4
x 2 = - x 4
x 1 = - x 4

Системы линейных уравнений, у которой все свободные члены равны нулю, называются однородными :

Любая однородная система всегда совместна, поскольку всегда обладает нулевым (тривиальным ) решением. Возникает вопрос, при каких условиях однородная система будет иметь нетривиальное решение.

Теорема 5.2. Однородная система имеет нетривиальное решение тогда и только тогда, когда ранг основной матрицы меньше числа ее неизвестных.

Следствие . Квадратная однородная система имеет нетривиальное решение тогда и только тогда, когда определитель основной матрицы системы не равен нулю.

Пример 5.6. Определить значения параметра l, при которых система имеет нетривиальные решения, и найти эти решения:

Решение . Эта система будет иметь нетривиальное решение тогда, когда определитель основной матрицы равен нулю:

Таким образом, система нетривиальна, когда l=3 или l=2. При l=3 ранг основной матрицы системы равен 1. Тогда оставляя только одно уравнение и полагая, что y =a и z =b , получим x=b-a , т.е.

При l=2 ранг основной матрицы системы равен 2. Тогда, выбирая в качестве базисного минор:

получим упрощенную систему

Отсюда находим, что x=z /4, y=z /2. Полагая z =4a , получим

Множество всех решений однородной системы обладает весьма важным линейным свойством : если столбцы X 1 и X 2 - решения однородной системы AX = 0 , то всякая их линейная комбинация aX 1 + bX 2 также будет решением этой системы . Действительно, поскольку AX 1 = 0 и AX 2 = 0 , то A (aX 1 + bX 2) = aAX 1 + bAX 2 = a · 0 + b · 0 = 0. Именно вследствие этого свойства, если линейная система имеет более одного решения, то этих решений будет бесконечно много.

Линейно независимые столбцы E 1 , E 2 , E k , являющиеся решениями однородной системы, называется фундаментальной системой решений однородной системы линейных уравнений, если общее решение этой системы можно записать в виде линейной комбинации этих столбцов:

Если однородная система имеет n переменных, а ранг основной матрицы системы равен r , то k = n-r .

Пример 5.7. Найти фундаментальную систему решений следующей системы линейных уравнений:

Решение . Найдем ранг основной матрицы системы:

Таким образом, множество решений данной системы уравнений образует линейное подпространство размерности n - r = 5 - 2 = 3. Выберем в качестве базисного минор

Тогда оставляя только базисные уравнения (остальные будут линейной комбинацией этих уравнений) и базисные переменные (осталь-ные, так называемые свободные, переменные переносим вправо), по-лучим упрощенную систему уравнений:

Полагая, x 3 = a , x 4 = b , x 5 = c , находим


Полагая a = 1, b = c = 0, получим первое базисное решение; полагая b = 1, a = c = 0, получим второе базисное решение; полагая c = 1, a = b = 0, получим третье базисное решение. В результате, нормальная фундаментальная система решений примет вид

С использованием фундаментальной системы общее решение однородной системы можно записать в виде

X = aE 1 + bE 2 + cE 3 . à

Отметим некоторые свойства решений неоднородной системы линейных уравнений AX=B и их взаимосвязь соответствующей однородной системой уравнений AX = 0.

Общее решение неоднородной системы равно сумме общего решения соответствующей однородной системы AX = 0 и произвольного частного решения неоднородной системы . Действительно, пусть Y 0 произвольное частное решение неоднородной системы, т.е. AY 0 = B , и Y - общее решение неоднородной системы, т.е. AY = B . Вычитая одно равенство из другого, получим
A (Y-Y 0) = 0, т.е. Y - Y 0 есть общее решение соответствующей однородной системы AX =0. Следовательно, Y - Y 0 = X , или Y = Y 0 + X . Что и требовалось доказать.

Пусть неоднородная система имеет вид AX = B 1 + B 2 . Тогда общее решение такой системы можно записать в виде X = X 1 + X 2 , где AX 1 = B 1 и AX 2 = B 2 . Это свойство выражает универсальное свойство вообще любых линейных систем (алгебраических, дифференциальных, функциональных и т.д.). В физике это свойство называется принципом суперпозиции , в электро- и радиотехнике - принципом наложения . Например, в теории линейных электрических цепей ток в любом контуре может быть получен как алгебраическая сумма токов, вызываемых каждым источником энергии в отдельности.

Система m линейных уравнений c n неизвестными называется системой линейных однородных уравнений, если все свободные члены равны нулю. Такая система имеет вид:

где а ij (i = 1, 2, …, m ; j = 1, 2, …, n ) - заданные числа; х i – неизвестные.

Система линейных однородных уравнений всегда совместна, так как r (А) = r (). Она всегда имеет, по крайней мере, нулевое (тривиальное ) решение (0; 0; …; 0).

Рассмотрим при каких условиях однородные системы имеют ненулевые решения.

Теорема 1. Система линейных однородных уравнений имеет ненулевые решения тогда и только тогда, когда ранг её основной матрицы r меньше числа неизвестных n , т.е. r < n .

1). Пусть система линейных однородных уравнений имеет ненулевое решение. Так как ранг не может превосходить размера матрицы, то, очевидно, r n . Пусть r = n . Тогда один из миноров размера n n отличен от нуля. Поэтому соответствующая система линейных уравнений имеет единственное решение: , , . Значит, других, кроме тривиальных, решений нет. Итак, если есть нетривиальное решение, то r < n .

2). Пусть r < n . Тогда однородная система, будучи совместной, является неопределённой. Значит, она имеет бесконечное множество решений, т.е. имеет и ненулевые решения.

Рассмотрим однородную систему n линейных уравнений c n неизвестными:

(2)

Теорема 2. Однородная система n линейных уравнений c n неизвестными (2) имеет ненулевые решения тогда и только тогда, когда её определитель равен нулю: = 0.

Если система (2) имеет ненулевое решение, то = 0. Ибо при система имеет только единственное нулевое решение. Если же = 0, то ранг r основной матрицы системы меньше числа неизвестных, т.е. r < n . И, значит, система имеет бесконечное множество решений, т.е. имеет и ненулевые решения.

Обозначим решение системы (1) х 1 = k 1 , х 2 = k 2 , …, х n = k n в виде строки .

Решения системы линейных однородных уравнений обладают следующими свойствами:

1. Если строка - решение системы (1), то и строка - решение системы (1).

2. Если строки и - решения системы (1), то при любых значениях с 1 и с 2 их линейная комбинация - тоже решение системы (1).

Проверить справедливость указанных свойств можно непосредственной подстановкой их в уравнения системы.

Из сформулированных свойств следует, что всякая линейная комбинация решений системы линейных однородных уравнений также является решением этой системы.

Система линейно независимых решений е 1 , е 2 , …, е р называется фундаментальной , если каждое решение системы (1) является линейной комбинацией этих решений е 1 , е 2 , …, е р .

Теорема 3. Если ранг r матрицы коэффициентов при переменных системы линейных однородных уравнений (1) меньше числа переменных n , то всякая фундаментальная система решений системы (1) состоит из n – r решений.

Поэтому общее решение системы линейных однородных уравнений (1) имеет вид:

где е 1 , е 2 , …, е р – любая фундаментальная система решений системы (9), с 1 , с 2 , …, с р – произвольные числа, р = n – r .

Теорема 4. Общее решение системы m линейных уравнений c n неизвестными равно сумме общего решения соответствующей ей системы линейных однородных уравнений (1) и произвольного частного решения этой системы (1).

Пример. Решите систему

Решение. Для данной системы m = n = 3. Определитель

по теореме 2 система имеет только тривиальное решение: x = y = z = 0.

Пример. 1) Найдите общее и частные решения системы

2) Найдите фундаментальную систему решений.

Решение. 1) Для данной системы m = n = 3. Определитель

по теореме 2 система имеет ненулевые решения.

Так как в системе только одно независимое уравнение

x + y – 4z = 0,

то из него выразим x =4z - y . Откуда получим бесконечное множество решений: (4z - y , y , z ) – это и есть общее решение системы.

При z = 1, y = -1, получим одно частное решение: (5, -1, 1). Положив z = 3, y = 2, получим второе частное решение: (10, 2, 3) и т.д.

2) В общем решении (4z - y , y , z ) переменные y и z являются свободными, а переменная х – зависимая от них. Для того, чтобы найти фундаментальную систему решений, придадим свободным переменным значения: сначала y = 1, z = 0, затем y = 0, z = 1. Получим частные решения (-1, 1, 0), (4, 0, 1), которые и образуют фундаментальную систему решений.

Иллюстрации :

Рис. 1 Классификация систем линейных уравнений

Рис. 2 Исследование систем линейных уравнений

Презентации:

· Решение СЛАУ_матричный метод

· Решение СЛАУ_метод Крамера

· Решение СЛАУ_метод Гаусса

· Пакеты решения математических задач Mathematica, MathCad : поиск аналитического и числового решения систем линейных уравнений

Контрольные вопросы :

1. Дайте определение линейного уравнения

2. Какой вид имеет система m линейных уравнений с n неизвестными?

3. Что называется решением систем линейных уравнений?

4. Какие системы называются равносильными?

5. Какая система называется несовместной?

6. Какая система называется совместной?

7. Какая система называется определенной?

8. Какая система называется неопределенной

9. Перечислите элементарные преобразования систем линейных уравнений

10. Перечислите элементарные преобразования матриц

11. Сформулируйте теорему о применении элементарных преобразований к системе линейных уравнений

12. Какие системы можно решать матричным методом?

13. Какие системы можно решать методом Крамера?

14. Какие системы можно решать методом Гаусса?

15. Перечислите 3 возможных случая, возникающих при решении систем линейных уравнений методом Гаусса

16. Опишите матричный метод решения систем линейных уравнений

17. Опишите метод Крамера решения систем линейных уравнений

18. Опишите метод Гаусса решения систем линейных уравнений

19. Какие системы можно решать с применением обратной матрицы?

20. Перечислите 3 возможных случая, возникающих при решении систем линейных уравнений методом Крамера

Литература :

1. Высшая математика для экономистов: Учебник для вузов / Н.Ш. Кремер, Б.А. Путко, И.М. Тришин, М.Н.Фридман. Под ред. Н.Ш. Кремера. – М.: ЮНИТИ, 2005. – 471 с.

2. Общий курс высшей математики для экономистов: Учебник. / Под ред. В.И. Ермакова. –М.: ИНФРА-М, 2006. – 655 с.

3. Сборник задач по высшей математике для экономистов: Учебное пособие / Под ред.В.И. Ермакова. М.: ИНФРА-М, 2006. – 574 с.

4. Гмурман В. Е. Руководство к решению задач по теории вероятностей и магматической статистике. - М.: Высшая школа, 2005. – 400 с.

5. Гмурман. В.Е Теория вероятностей и математическая статистика. - М.: Высшая школа, 2005.

6. Данко П.Е., Попов А.Г., Кожевникова Т.Я. Высшая математика в упражнениях и задачах. Ч. 1, 2. – М.: Оникс 21 век: Мир и образование, 2005. – 304 с. Ч. 1; – 416 с. Ч. 2.

7. Математика в экономике: Учебник: В 2-х ч. / А.С. Солодовников, В.А. Бабайцев, А.В. Браилов, И.Г. Шандара. – М.: Финансы и статистика, 2006.

8. Шипачев В.С. Высшая математика: Учебник для студ. вузов – М.: Высшая школа, 2007. – 479 с.


Похожая информация.


Линейная система называется однородной , если все ее свободные члены равны 0.

В матричном виде однородная система записывается:
.

Однородная система (2) всегда совместна . Очевидно, что набор чисел
,
, …,
удовлетворяет каждому уравнению системы. Решение
называетсянулевым илитривиальным решением. Таким образом, однородная система всегда имеет нулевое решение.

При каких условиях однородная система (2) будет иметь ненулевые (нетривиальные) решения?

Теорема 1.3 Однородная система (2)имеет ненулевые решения тогда и только тогда, когда рангr ее основной матрицыменьше числа неизвестныхn .

Система (2) – неопределенная
.

Следствие 1. Если число уравненийm однородной системы меньше числа переменных
, то система является неопределенной и имеет множество ненулевых решений.

Следствие 2. Квадратная однородная система
имеет ненулевые решения тогда и тогда, когда основная матрица этой системывырождена, т.е. определитель
.

В противном случае, если определитель
, квадратная однородная система имеетединственное нулевое решение
.

Пусть ранг системы (2)
т. е система (2) имеет нетривиальные решения.

Пусть и- частные решения этой системы, т.е.
и
.

Свойства решений однородной системы


Действительно, .


Действительно, .

Объединяя, свойства 1) и 2), можно сказать, что если

…,
- решения однородной системы (2), то и всякая их линейная комбинация- также является ее решением. Здесь
- произвольные действительные числа.

Можно найти
линейно независимых частных решений однородной системы (2), с помощью которых можно получить любое другое частное решение данной системы, т.е. получить общее решение системы (2).

Определение 2.2 Совокупность
линейно независимых частных решений

…,
однородной системы (2) таких, что каждое решение системы (2) можно представить в виде их линейной комбинации, называетсяфундаментальной системой решений (ФСР) однородной системы (2).

Пусть

…,
- фундаментальная система решений, тогда общее решение однородной системы (2) можно представить в виде:

Где

.

Замечание. Чтобы получить ФСР, нужно найти частные решения

…,
, придавая поочередно какой-либо одной свободной переменной значение «1», а всем остальным свободным переменным – значения «0».

Получим ,, …,- ФСР.

Пример. Найти общее решение и фундаментальную систему решений однородной системы уравнений:

Решение. Запишем расширенную матрицу системы, предварительно поставив на первое место последнее уравнение системы, и приведем ее к ступенчатому виду. Поскольку правые части уравнений в результате элементарных преобразований не меняются, оставаясь нулями, столбец

можно не выписывать.

̴
̴
̴

Ранг системы где
- число переменных. Система неопределенная, имеет множество решений.

Базисный минор при переменных
отличен от нуля:
выбираем
в качестве базисных переменных, остальные
- свободные переменные (принимают любые действительные значения).

Последней в цепочке матрице соответствует ступенчатая система уравнений:

(3)

Выразим базисные переменные
через свободные переменные
(обратный ход метода Гаусса).

Из последнего уравнения выразим :
и подставим в первое уравнение. Получим. Раскроем скобки, приведем подобные и выразим:
.

Полагая
,
,
, где
, запишем

- общее решение системы.

Найдем фундаментальную систему решений

,,.

Тогда общее решение однородной системы можно записать в виде:

Замечание. ФСР можно было найти другим путем, без предварительного отыскания общего решения системы. Для этого полученную ступенчатую систему (3) нужно было решить трижды, полагая для:
; для:
; для:
.

Рассмотрим однородную систему m линейных уравнений с n переменными:

(15)

Система однородных линейных уравнений всегда совместна, т.к. она всегда имеет нулевое (тривиальное) решение (0,0,…,0).

Если в системе (15) m=n и , то система имеет только нулевое решение, что следует из теоремы и формул Крамера.

Теорема 1 . Однородная система (15) имеет нетривиальное решение тогда и только тогда, когда ранг ее матрицы меньше числа переменных,т.е. r (A )< n .

Доказательство . Существование нетривиального решения системы (15) эквивалентно линейной зависимости столбцов матрицы системы (т.е. существуют такие числа х 1 , x 2 ,…,x n , не все равные нулю, что справедливы равенства (15)).

По теореме о базисном миноре столбцы матрицы линейно зависимы , когда не все столбцы этой матрицы являются базисными, т.е. , когда порядок r базисного минора матрицы меньше числа n ее столбцов. Ч.т.д.

Следствие . Квадратная однородная система имеет нетривиальные решения , когда |А|=0.

Теорема 2 . Если столбцы х (1) ,х (2) ,…,х (s) решения однородной системы АХ=0, то любая их линейная комбинация так же является решением этой системы.

Доказательство . Рассмотрим любую комбинацию решений:

Тогда АХ=А()===0. ч.т.д.

Следствие 1. Если однородная система имеет нетривиальное решение, то она имеет бесконечно много решений.

Т.о. необходимо найти такие решения х (1) ,х (2) ,…,х (s) системы Ах=0, чтобы любое другое решение этой системы представлялось в виде их линейной комбинации и притом единственным образом.

Определение. Система k=n-r (n –количество неизвестных в системе, r=rg A) линейно независимых решений х (1) ,х (2) ,…,х (k) системы Ах=0 называется фундаментальной системой решений этой системы.

Теорема 3 . Пусть дана однородная система Ах=0 с n неизвестными и r=rg A. Тогда существует набор из k=n-r решений х (1) ,х (2) ,…,х (k) этой системы, образующих фундаментальную систему решений.

Доказательство . Не ограничивая общности, можно считать, что базисный минор матрицы А расположен в верхнем левом углу. Тогда, по теореме о базисном миноре, остальные строки матрицы А являются линейными комбинациями базисных строк. Это означает, что если значения х 1 ,х 2 ,…,x n удовлетворяют первым r уравнениям т.е. уравнениям, соответствующим строкам базисного минора), то они удовлетворяют и другим уравнениям. Следовательно, множество решений системы не изменится, если отбросить все уравнения начиная с (r+1)-го. Получим систему:

Перенесем свободные неизвестные х r +1 ,х r +2 ,…,x n в правую часть, а базисные х 1 ,х 2 ,…,x r оставим в левой:

(16)

Т.к. в этом случае все b i =0, то вместо формул

c j =(M j (b i)-c r +1 M j (a i , r +1)-…-c n M j (a in)) j=1,2,…,r ((13), получим:

c j =-(c r +1 M j (a i , r +1)-…-c n M j (a in)) j=1,2,…,r (13)

Если задать свободным неизвестным х r +1 ,х r +2 ,…,x n произвольные значения, то относительно базисных неизвестных получим квадратную СЛАУ с невырожденной матрицей, у которой существует единственное решение. Т.о., любое решение однородной СЛАУ однозначно определяется значениями свободных неизвестных х r +1 ,х r +2 ,…,x n . Рассмотрим следующие k=n-r серий значений свободных неизвестных:

1, =0, ….,=0,

1, =0, ….,=0, (17)

………………………………………………

1, =0, ….,=0,

(Номер серии указан верхним индексом в скобках, а серии значений выписаны в виде столбцов. В каждой серии =1, еслиi=j и =0, еслиij.

i-й серии значений свободных неизвестных однозначно соответствуют значения ,,…,базисных неизвестных. Значения свободных и базисных неизвестных в совокупности дают решения системы (17).

Покажем, что столбцы е i =,i=1,2,…,k (18)

образуют фундаментальную систему решений.

Т.к. эти столбцы по построению являются решениями однородной системы Ах=0 и их количество равно k, то остается доказать линейную независимость решений (16). Пусть есть линейная комбинация решенийe 1 , e 2 ,…, e k (х (1) , х (2) ,…,х (k)), равная нулевому столбцу:

1 e 1 +  2 e 2 +…+  k e k ( 1 х (1) + 2 х (2) +…+ k х (k) =0)

Тогда левая часть этого равенства является столбцом, компоненты которого с номерами r+1,r+2,…,n равны нулю. Но (r+1)-я компоненты равна  1 1+ 2 0+…+ k 0= 1 . Аналогично, (r+2)-я компонента равна  2 ,…, k-я компонента равна  k . Поэтому  1 =  2 = …= k =0, что и означает линейную независимость решений e 1 , e 2 ,…, e k (х (1) , х (2) ,…,х (k)).Ч.т.д.

Построенная фундаментальная система решений (18) называется нормальной . В силу формулы (13) она имеет следующий вид:

(20)

Следствие 2 . Пусть e 1 , e 2 ,…, e k -нормальная фундаментальная система решений однородной системы, тогда множество всех решений можно описать формулой:

х=с 1 e 1 +с 2 e 2 +…+с k e k (21)

где с 1 ,с 2 ,…,с k – принимают произвольные значения.

Доказательство . По теореме 2 столбец (19) является решением однородной системы Ах=0. Остается доказать, что любое решение этой системы можно представить в виде (17). Рассмотрим столбецх =у r +1 e 1 +…+y n e k . Этот столбец совпадает со столбцом у по элементам с номерами r+1,…,n и является решением (16). Поэтому столбцы х и у совпадают, т.к. решения системы (16) определяются однозначно набором значений ее свободных неизвестных x r +1 ,…,x n , а у столбцов у и х эти наборы совпадают. Следовательно, у =х = у r +1 e 1 +…+y n e k , т.е. решение у является линейной комбинацией столбцов e 1 ,…,y n нормальной ФСР. Ч.т.д.

Доказанное утверждение справедливо не только для нормальной ФСР, но и для произвольной ФСР однородной СЛАУ.

Х= c 1 Х 1 + c 2 Х 2 +…+с n - r Х n - r - общее решение системы линейных однородных уравнений

Где Х 1 ,Х 2 ,…,Х n - r – любая фундаментальная система решений,

c 1 ,c 2 ,…,с n - r – произвольные числа.

Пример . (с. 78)

Установим связь между решениями неоднородной СЛАУ (1) и соответствующей ей однородной СЛАУ(15)

Теорема 4 . Сумма любого решения неоднородной системы (1) и соответствующей ей однородной системы (15) является решением системы (1).

Доказательство . Если c 1 ,…,c n – решение системы (1), а d 1 ,…,d n - решение системы (15), то подставив в любое (например, в i-е) уравнение системы (1) на место неизвестных числа c 1 +d 1 ,…,c n +d n , получим:

B i +0=b i ч.т.д.

Теорема 5 . Разность двух произвольных решений неоднородной системы (1) является решением однородной системы (15).

Доказательство . Если c 1 ,…,c n и c 1 ,…,c n – решения системы (1), то подставив в любое (например, в i-е) уравнение системы (1) на место неизвестных числа c 1 -с 1 ,…,c n -с n , получим:

B i -b i =0 ч.т.д.

Из доказанных теорем следует, что общее решение системы m линейных однородных уравнений с n переменными равно сумме общего решения соответствующей ей системы однородных линейных уравнений (15) и произвольного числа частного решения этой системы (15).

Х неод. общ. одн. част. неодн. (22)

В качестве частного решения неоднородной системы естественно взять то его решение, которое получается, если в формулах c j =(M j (b i)-c r +1 M j (a i , r +1)-…-c n M j (a in)) j=1,2,…,r ((13) положить равными нулю все числа c r +1 ,…,c n ,т.е.

Х 0 =(,…,,0,0,…,0) (23)

Складывая это частное решение с общим решением Х= c 1 Х 1 + c 2 Х 2 +…+с n - r Х n - r соответствующей однородной системы, получаем:

Х неод. 0 1 Х 1 2 Х 2 +…+С n - r Х n - r (24)

Рассмотрим систему двух уравнений с двумя переменными:

в которой хотя бы один из коэф. a ij 0.

Для решения исключим х 2 , умножив первое уравнение на а 22 , а второе – на (-а 12) и сложив их: Исключим х 1 , умножив первое уравнение на (-а 21), а второе – на а 11 и сложив их: Выражение в скобках – определитель

Обозначив ,, тогда система примет вид:, т.о., если, то система имеет единственное решение:,.

Если Δ=0, а (или), то система несовместна, т.к. приводится к видуЕсли Δ=Δ 1 =Δ 2 =0, то система неопределенная, т.к. приводится к виду