В данной статье мы рассмотрим общее уравнение прямой на плоскости. Приведем примеры построения общего уравнения прямой, если известны две точки этой прямой или если известна одна точка и нормальный вектор этой прямой. Представим методы преобразования уравнения в общем виде в канонический и параметрический виды.

Пусть задана произвольная декартова прямоугольная система координат Oxy . Рассмотрим уравнение первой степени или линейное уравнение:

Ax+By+C =0, (1)

где A, B, C − некоторые постоянные, причем хотя бы один из элементов A и B отлично от нуля.

Мы покажем, что линейное уравнение на плоскости определяет прямую. Докажем следующую теорему.

Теорема 1. В произвольной декартовой прямоугольной системе координат на плоскости каждая прямая линия может быть задана линейным уравнением. Обратно, каждое линейное уравнение (1) в произвольной декартовой прямоугольной системе координат на плоскости определяет прямую линию.

Доказательство. Достаточно доказать, что прямая L определяется линейным уравнением при какой нибудь одной декартовой прямоугольной системе координат, поскольку тогда она будет определяться линейным уравнением и при любом выборе декартовой прямоугольной системы координат.

Пусть на плоскости задана прямая L . Выберем систему координат так, чтобы ось Ox совпадал с прямой L , а ось Oy был перпендикулярной к ней. Тогда уравнение прямой L примет следующий вид:

y=0. (2)

Все точки на прямой L будут удовлетворять линейному уравнению (2), а все точки вне этой прямой, не будут удовлетворять уравнению (2). Первая часть теоремы доказана.

Пусть задана декартова прямоугольная система координат и пусть задана линейное уравнение (1), где хотя бы один из элементов A и B отличен от нуля. Найдем геометрическое место точек, координаты которых удовлетворяют уравнению (1). Так как хотя бы один из коэффициентов A и B отличен от нуля, то уравнение (1) имеет хотя бы одно решение M (x 0 ,y 0). (Например, при A ≠0, точка M 0 (−C/A , 0) принадлежит данному геометрическому месту точек). Подставляя эти координаты в (1) получим тождество

Ax 0 +By 0 +C =0. (3)

Вычтем из (1) тождество (3):

A (x x 0)+B (y y 0)=0. (4)

Очевидно, что уравнение (4) эквивалентно уравнению (1). Поэтому достаточно доказать, что (4) определяет некоторую прямую.

Поскольку мы рассматриваем декартову прямоугольную систему координат, то из равенства (4) следует, что вектор с компонентами {x−x 0 , y−y 0 } ортогонален вектору n с координатами {A,B }.

Рассмотрим некоторую прямую L , проходящую через точку M 0 (x 0 , y 0) и перпендикулярной вектору n (Рис.1). Пусть точка M (x ,y) принадлежит прямой L . Тогда вектор с координатами x−x 0 , y−y 0 перпендикулярен n и уравнение (4) удовлетворено (скалярное произведение векторов n и равно нулю). Обратно, если точка M (x ,y) не лежит на прямой L , то вектор с координатами x−x 0 , y−y 0 не ортогонален вектору n и уравнение (4) не удовлетворено. Теорема доказана.

Доказательство. Так как прямые (5) и (6) определяют одну и ту же прямую, то нормальные векторы n 1 ={A 1 ,B 1 } и n 2 ={A 2 ,B 2 } коллинеарны. Так как векторы n 1 ≠0, n 2 ≠0, то существует такое число λ , что n 2 =n 1 λ . Отсюда имеем: A 2 =A 1 λ , B 2 =B 1 λ . Докажем, что C 2 =C 1 λ . Очевидно, что совпадающие прямые имеют общую точку M 0 (x 0 , y 0). Умножая уравнение (5) на λ и вычитая из него уравнение (6) получим:

Так как выполнены первые два равенства из выражений (7), то C 1 λ C 2 =0. Т.е. C 2 =C 1 λ . Замечание доказано.

Заметим, что уравнение (4) определяет уравнение прямой, проходящей через точку M 0 (x 0 , y 0) и имеющий нормальный вектор n ={A,B }. Поэтому, если известен нормальный вектор прямой и точка, принадлежащая этой прямой, то можно построить общее уравнение прямой с помощью уравнения (4).

Пример 1. Прямая проходит через точку M =(4,−1) и имеет нормальный вектор n ={3, 5}. Построить общее уравнение прямой.

Решение. Имеем: x 0 =4, y 0 =−1, A =3, B =5. Для построения общего уравнения прямой, подставим эти значения в уравнение (4):

Ответ:

Вектор параллелен прямой L и, следовательно, перпердикулярен нормальному вектору прямой L . Построим нормальный вектор прямой L , учитывая, что скалярное произведение векторов n и равно нулю. Можем записать, например, n ={1,−3}.

Для построения общего уравнения прямой воспользуемся формулой (4). Подставим в (4) координаты точки M 1 (можем взять также координаты точки M 2) и нормального вектора n :

Подставляя координаты точек M 1 и M 2 в (9) можем убедится, что прямая заданная уравнением (9) проходит через эти точки.

Ответ:

Вычтем (10) из (1):

Мы получили каноническое уравнение прямой. Вектор q ={−B , A } является направляющим вектором прямой (12).

Обратное преобразование смотрите .

Пример 3. Прямая на плоскости представлена следующим общим уравнением:

Переместим на право вторую слагаемую и разделим обе части уравнения на 2·5.

Установим на плоскости прямоугольную систему координат и рассмотрим общее уравнение второй степени

в котором
.

Множество всех точек плоскости, координаты которых удовлетворяют уравнению (8.4.1), называется кривой (линией ) второго порядка .

Для всякой кривой второго порядка существует прямоугольная система координат, называемая канонической, в которой уравнение этой кривой имеет один из следующих видов:

1)
(эллипс);

2)
(мнимый эллипс);

3)
(пара мнимых пересекающихся прямых);

4)
(гипербола);

5)
(пара пересекающихся прямых);

6)
(парабола);

7)
(пара параллельных прямых);

8)
(пара мнимых параллельных прямых);

9)
(пара совпадающих прямых).

Уравнения 1)–9) называются каноническими уравнениями кривых второго порядка.

Решение задачи приведения уравнения кривой второго порядка к каноническому виду включает нахождение канонического уравнения кривой и канонической системы координат. Приведение к каноническому виду позволяет вычислить параметры кривой и определить ее расположение относительно исходной системы координат. Переход от исходной прямоугольной системы координат
к канонической
осуществляется путем поворота осей исходной системы координат вокруг точкиО на некоторый угол  и последующего параллельного переноса системы координат.

Инвариантами кривой второго порядка (8.4.1) называются такие функции от коэффициентов ее уравнения, значения которых не меняются при переходе от одной прямоугольной системы координат к другой такой же системе.

Для кривой второго порядка (8.4.1) сумма коэффициентов при квадратах координат

,

определитель, составленный из коэффициентов при старших членах

и определитель третьего порядка

являются инвариантами.

Значение инвариантов s, ,  можно использовать для определения типа и составления канонического уравнения кривой второго порядка (табл. 8.1).

Таблица 8.1

Классификация кривых второго порядка, основанная на инвариантах

Рассмотрим подробнее эллипс, гиперболу и параболу.

Эллипсом (рис. 8.1) называется геометрическое место точек плоскости, для которых сумма расстояний до двух фиксированных точек
этой плоскости, называемыхфокусами эллипса , есть величина постоянная (большая, чем расстояние между фокусами). При этом не исключается совпадение фокусов эллипса. Если фокусы совпадают, то эллипс представляет собой окружность.

Полусумму расстояний от точки эллипса до его фокусов обозначают через а , половину расстояний между фокусами – с . Если прямоугольная система координат на плоскости выбрана так, что фокусы эллипса располагаются на оси О x симметрично относительно начала координат, то в этой системе координат эллипс задается уравнением

, (8.4.2)

называемым каноническим уравнением эллипса , где
.

Рис. 8.1

При указанном выборе прямоугольной системы координат эллипс симметричен относительно осей координат и начала координат. Оси симметрии эллипса называют его осями , а центрего симметрии – центром эллипса . Вместе с тем часто осями эллипса называют числа 2a и 2b , а числа a и b большой и малой полуосью соответственно.

Точки пересечения эллипса с его осями называются вершинами эллипса . Вершины эллипса имеют координаты (а , 0), (–а , 0), (0, b ), (0, –b ).

Эксцентриситетом эллипса называется число

. (8.4.3)

Поскольку 0  c < a , эксцентриситет эллипса 0   < 1, причем у окружности  = 0. Перепишем равенство (8.4.3) в виде

.

Отсюда видно, что эксцентриситет характеризует форму эллипса: чем ближе  к нулю, тем больше эллипс похож на окружность; при увеличении  эллипс становится более вытянутым.

Пусть
– произвольная точка эллипса,
и
– расстояния от точкиМ до фокусов F 1 и F 2 соответственно. Числа r 1 и r 2 называются фокальными радиусами точки М эллипса и вычисляются по формулам

Директрисами отличного от окружности эллипса с каноническим уравнением (8.4.2) называются две прямые

.

Директрисы эллипса расположены вне эллипса (рис. 8.1).

Отношение фокального радиуса точки M эллипса к расстоянию этого эллипса (фокус и директриса считаются соответствующими, если они расположены по одну сторону от центра эллипса).

Гиперболой (рис. 8.2) называется геометрическое место точек плоскости, для которых модуль разности расстояний до двух фиксированных точек иэтой плоскости, называемыхфокусами гиперболы , есть величина постоянная (не равная нулю и меньшая, чем расстояние между фокусами).

Пусть расстояние между фокусами равно 2с , а указанный модуль разности расстояний равен 2а . Выберем прямоугольную систему координат так же, как и для эллипса. В этой системе координат гипербола задается уравнением

, (8.4.4)

называемым каноническим уравнением гиперболы , где
.

Рис. 8.2

При данном выборе прямоугольной системы координат оси координат являются осями симметрии гиперболы, а начало координат – ее центром симметрии. Оси симметрии гиперболы называют ее осями , а центр симметрии – центром гиперболы . Прямоугольник со сторонами 2a и 2b , расположенный, как показано на рис. 8.2, называется основным прямоугольником гиперболы . Числа 2a и 2b – оси гиперболы, а числа a и b – ее полуоси . Прямые, являющиеся продолжением диагоналей основного прямоугольника, образуют асимптоты гиперболы

.

Точки пересечения гиперболы с осью Ox называются вершинами гиперболы . Вершины гиперболы имеют координаты (а , 0), (–а , 0).

Эксцентриситетом гиперболы называется число

. (8.4.5)

Поскольку с > a , эксцентриситет гиперболы  > 1. Перепишем равенство (8.4.5) в виде

.

Отсюда видно, что эксцентриситет характеризует форму основного прямоугольника и, следовательно, форму самой гиперболы: чем меньше , больше вытягивается основной прямоугольник, а вслед за ним и сама гипербола вдоль оси Ox .

Пусть
– произвольная точка гиперболы,
и
– расстояния от точкиМ до фокусов F 1 и F 2 соответственно. Числа r 1 и r 2 называются фокальными радиусами точки М гиперболы и вычисляются по формулам

Директрисами гиперболы с каноническим уравнением (8.4.4) называются две прямые

.

Директрисы гиперболы пересекают основной прямоугольник и проходят между центром и соответствующей вершиной гиперболы (рис. 8.2).

Отношение фокального радиусаточки M гиперболы к расстоянию от этой точки до отвечающей фокусудиректрисы равно эксцентриситету этой гиперболы (фокус и директриса считаются соответствующими, если они расположены по одну сторону от центра гиперболы).

Параболой (рис. 8.3) называется геометрическое место точек плоскости, для которых расстояние до некоторой фиксированной точки F (фокуса параболы ) этой плоскости равно расстоянию до некоторой фиксированной прямой (директрисы параболы ), также расположенной в рассматриваемой плоскости.

Выберем начало О прямоугольной системы координат в середине отрезка [FD ], представляющего собой перпендикуляр, опущенный из фокуса F на директрису (предполагается, что фокус не принадлежит директрисе), а оси Ox и Oy направим так, как показано на рис. 8.3. Пусть длина отрезка [FD ] равна p . Тогда в выбранной системе координат
иканоническое уравнение параболы имеет вид

. (8.4.6)

Величина p называется параметром параболы .

Парабола имеет ось симметрии, которая называется осью параболы . Точка пересечения параболы с ее осью называется вершиной параболы . Если парабола задана своим каноническим уравнением (8.4.6), то осью параболы является ось Ox . Очевидно, вершиной параболы является начало координат.

Пример 1. Точка А = (2, –1) принадлежит эллипсу, точка F = (1, 0) является его фокусом, соответствующая F директриса задана уравнением
. Составьте уравнение этого эллипса.

Решение. Будем считать систему координат прямоугольной. Тогда расстояние от точкиА до директрисы
в соответствии с соотношением (8.1.8), в котором


, равно

.

Расстояние от точкиА до фокуса F равно

,

что позволяет определить эксцентриситет эллипса

.

Пусть M = (x , y ) – произвольная точка эллипса. Тогда расстояние
от точкиМ до директрисы
по формуле (8.1.8) равно

а расстояние от точкиМ до фокуса F равно

.

Поскольку для любой точки эллипса отношение есть величина постоянная, равная эксцентриситету эллипса, отсюда имеем

,

Пример 2. Кривая задана уравнением

в прямоугольной системе координат. Найдите каноническую систему координат и каноническое уравнение этой кривой. Определите тип кривой.

Решение. Квадратичная форма
имеет матрицу

.

Ее характеристический многочлен

имеет корни  1 = 4 и  2 = 9. Следовательно, в ортонормированном базисе из собственных векторов матрицы А рассматриваемая квадратичная форма имеет канонический вид

.

Перейдем к построению матрицы ортогонального преобразования переменных, приводящего рассматриваемую квадратичную форму к указанному каноническому виду. Для этого будем строить фундаментальные системы решений однородных систем уравнений
и ортонормировать их.

При
эта система имеет вид

Ее общим решением является
. Здесь одна свободная переменная. Поэтому фундаментальная система решений состоит из одного вектора, например, из вектора
. Нормируя его, получим вектор

.

При
также построим вектор

.

Векторы иуже ортогональны, так как относятся к различным собственным значениям симметричной матрицыА . Они составляют канонический ортонормированный базис данной квадратичной формы. Из столбцов их координат строится искомая ортогональная матрица (матрица поворота)

.

Проверим правильность нахождения матрицы Р по формуле
, где
– матрица квадратичной формы в базисе
:

Матрица Р найдена верно.

Выполним преобразование переменных

и запишем уравнение данной кривой в новой прямоугольной системе координат со старым центром и направляющими векторами
:

где
.

Получили каноническое уравнение эллипса

.

В силу того, что результирующее преобразование прямоугольных координат определяется формулами

,

,

каноническая система координат
имеет начало
и направляющие векторы
.

Пример 3. Применяя теорию инвариантов, определите тип и составьте каноническое уравнение кривой

Решение. Поскольку

,

в соответствии с табл. 8.1 заключаем, что это – гипербола.

Так как s = 0, характеристический многочлен матрицы квадратичной формы

Его корни
и
позволяют записать каноническое уравнение кривой

где С находится из условия

,

.

Искомое каноническое уравнение кривой

.

В задачах этого параграфа координаты x , y предполагаются прямоугольными.

8.4.1. Для эллипсов
и
найдите:

а) полуоси;

б) фокусы;

в) эксцентриситет;

г) уравнения директрис.

8.4.2. Составьте уравнения эллипса, зная его фокус
, соответствующую директрисуx = 8 и эксцентриситет . Найдите второй фокус и вторую директрису эллипса.

8.4.3. Составьте уравнение эллипса, фокусы которого имеют координаты (1, 0) и (0, 1), а большая ось равна двум.

8.4.4. Дана гипербола
. Найдите:

а) полуоси a и b ;

б) фокусы;

в) эксцентриситет;

г) уравнения асимптот;

д) уравнения директрис.

8.4.5. Дана гипербола
. Найдите:

а) полуоси а и b ;

б) фокусы;

в) эксцентриситет;

г) уравнения асимптот;

д) уравнения директрис.

8.4.6. Точка
принадлежит гиперболе, фокус которой
, а соответствующая директриса задана уравнением
. Составьте уравнение этой гиперболы.

8.4.7. Составьте уравнение параболы, если даны ее фокус
и директриса
.

8.4.8. Даны вершина параболы
и уравнение директрисы
. Составьте уравнение этой параболы.

8.4.9. Составьте уравнение параболы, фокус которой находится в точке

и директриса задана уравнением
.

8.4.10. Составьте уравнение кривой второго порядка, зная ее эксцентриситет
, фокус
и соответствующую директрису
.

8.4.11. Определите тип кривой второго порядка, составьте ее каноническое уравнение и найдите каноническую систему координат:

г)
;

8.4.12.

является эллипсом. Найдите длины полуосей и эксцентриситет этого эллипса, координаты центра и фокусов, составьте уравнения осей и директрис.

8.4.13. Докажите, что кривая второго порядка, заданная уравнением

является гиперболой. Найдите длины полуосей и эксцентриситет этой гиперболы, координаты центра и фокусов, составьте уравнения осей, директрис и асимптот.

8.4.14. Докажите, что кривая второго порядка, заданная уравнением

,

является параболой. Найдите параметр этой параболы, координаты вершин и фокуса, составьте уравнения оси и директрисы.

8.4.15. Каждое из следующих уравнений приведите к каноническому виду. Изобразите на чертеже соответствующую кривую второго порядка относительно исходной прямоугольной системы координат:

8.4.16. Применяя теорию инвариантов, определите тип и составьте каноническое уравнение кривой.

Свойства прямой в евклидовой геометрии.

Через любую точку можно провести бесконечно много прямых.

Через любые две несовпадающие точки можно провести единственную прямую.

Две несовпадающие прямые на плоскости или пересекаются в единственной точке, или являются

параллельными (следует из предыдущего).

В трёхмерном пространстве существуют три варианта взаимного расположения двух прямых:

  • прямые пересекаются;
  • прямые параллельны;
  • прямые скрещиваются.

Прямая линия — алгебраическая кривая первого порядка: в декартовой системе координат прямая линия

задается на плоскости уравнением первой степени (линейное уравнение).

Общее уравнение прямой.

Определение . Любая прямая на плоскости может быть задана уравнением первого порядка

Ах + Ву + С = 0,

причем постоянные А, В не равны нулю одновременно. Это уравнение первого порядка называют общим

уравнением прямой. В зависимости от значений постоянных А, В и С возможны следующие частные случаи:

. C = 0, А ≠0, В ≠ 0 - прямая проходит через начало координат

. А = 0, В ≠0, С ≠0 { By + C = 0} - прямая параллельна оси Ох

. В = 0, А ≠0, С ≠ 0 { Ax + C = 0} - прямая параллельна оси Оу

. В = С = 0, А ≠0 - прямая совпадает с осью Оу

. А = С = 0, В ≠0 - прямая совпадает с осью Ох

Уравнение прямой может быть представлено в различном виде в зависимости от каких - либо заданных

начальных условий.

Уравнение прямой по точке и вектору нормали.

Определение . В декартовой прямоугольной системе координат вектор с компонентами (А, В)

перпендикулярен прямой, заданной уравнением

Ах + Ву + С = 0.

Пример . Найти уравнение прямой, проходящей через точку А(1, 2) перпендикулярно вектору (3, -1).

Решение . Составим при А = 3 и В = -1 уравнение прямой: 3х - у + С = 0. Для нахождения коэффициента С

подставим в полученное выражение координаты заданной точки А. Получаем: 3 - 2 + C = 0, следовательно

С = -1. Итого: искомое уравнение: 3х - у - 1 = 0.

Уравнение прямой, проходящей через две точки.

Пусть в пространстве заданы две точки M 1 (x 1 , y 1 , z 1) и M2 (x 2, y 2 , z 2), тогда уравнение прямой ,

проходящей через эти точки:

Если какой-либо из знаменателей равен нулю, следует приравнять нулю соответствующий числитель. На

плоскости записанное выше уравнение прямой упрощается:

если х 1 ≠ х 2 и х = х 1 , если х 1 = х 2 .

Дробь = k называется угловым коэффициентом прямой .

Пример . Найти уравнение прямой, проходящей через точки А(1, 2) и В(3, 4).

Решение . Применяя записанную выше формулу, получаем:

Уравнение прямой по точке и угловому коэффициенту.

Если общее уравнение прямой Ах + Ву + С = 0 привести к виду:

и обозначить , то полученное уравнение называется

уравнением прямой с угловым коэффициентом k.

Уравнение прямой по точке и направляющему вектору.

По аналогии с пунктом, рассматривающим уравнение прямой через вектор нормали можно ввести задание

прямой через точку и направляющий вектор прямой.

Определение . Каждый ненулевой вектор (α 1 , α 2) , компоненты которого удовлетворяют условию

Аα 1 + Вα 2 = 0 называется направляющим вектором прямой.

Ах + Ву + С = 0.

Пример . Найти уравнение прямой с направляющим вектором (1, -1) и проходящей через точку А(1, 2).

Решение . Уравнение искомой прямой будем искать в виде: Ax + By + C = 0. В соответствии с определением,

коэффициенты должны удовлетворять условиям:

1 * A + (-1) * B = 0, т.е. А = В.

Тогда уравнение прямой имеет вид: Ax + Ay + C = 0, или x + y + C / A = 0.

при х = 1, у = 2 получаем С/ A = -3 , т.е. искомое уравнение:

х + у - 3 = 0

Уравнение прямой в отрезках.

Если в общем уравнении прямой Ах + Ву + С = 0 С≠0, то, разделив на -С, получим:

или , где

Геометрический смысл коэффициентов в том, что коэффициент а является координатой точки пересечения

прямой с осью Ох, а b - координатой точки пересечения прямой с осью Оу.

Пример . Задано общее уравнение прямой х - у + 1 = 0. Найти уравнение этой прямой в отрезках.

С = 1, , а = -1, b = 1.

Нормальное уравнение прямой.

Если обе части уравнения Ах + Ву + С = 0 разделить на число , которое называется

нормирующем множителем , то получим

xcosφ + ysinφ - p = 0 - нормальное уравнение прямой .

Знак ± нормирующего множителя надо выбирать так, чтобы μ * С < 0.

р - длина перпендикуляра, опущенного из начала координат на прямую,

а φ - угол, образованный этим перпендикуляром с положительным направлением оси Ох.

Пример . Дано общее уравнение прямой 12х - 5у - 65 = 0 . Требуется написать различные типы уравнений

этой прямой.

Уравнение этой прямой в отрезках :

Уравнение этой прямой с угловым коэффициентом : (делим на 5)

Уравнение прямой :

cos φ = 12/13; sin φ= -5/13; p = 5.

Следует отметить, что не каждую прямую можно представить уравнением в отрезках, например, прямые,

параллельные осям или проходящие через начало координат.

Угол между прямыми на плоскости.

Определение . Если заданы две прямые y = k 1 x + b 1 , y = k 2 x + b 2 , то острый угол между этими прямыми

будет определяться как

Две прямые параллельны, если k 1 = k 2 . Две прямые перпендикулярны,

если k 1 = -1/ k 2 .

Теорема .

Прямые Ах + Ву + С = 0 и А 1 х + В 1 у + С 1 = 0 параллельны, когда пропорциональны коэффициенты

А 1 = λА, В 1 = λВ . Если еще и С 1 = λС , то прямые совпадают. Координаты точки пересечения двух прямых

находятся как решение системы уравнений этих прямых.

Уравнение прямой, проходящей через данную точку перпендикулярно данной прямой.

Определение . Прямая, проходящая через точку М 1 (х 1 , у 1) и перпендикулярная к прямой у = kx + b

представляется уравнением:

Расстояние от точки до прямой.

Теорема . Если задана точка М(х 0 , у 0), то расстояние до прямой Ах + Ву + С = 0 определяется как:

Доказательство . Пусть точка М 1 (х 1 , у 1) - основание перпендикуляра, опущенного из точки М на заданную

прямую. Тогда расстояние между точками М и М 1 :

(1)

Координаты x 1 и у 1 могут быть найдены как решение системы уравнений:

Второе уравнение системы - это уравнение прямой, проходящей через заданную точку М 0 перпендикулярно

заданной прямой. Если преобразовать первое уравнение системы к виду:

A(x - x 0) + B(y - y 0) + Ax 0 + By 0 + C = 0,

то, решая, получим:

Подставляя эти выражения в уравнение (1), находим:

Теорема доказана.

Кривая второго порядка — геометрическое место точек на плоскости, прямоугольные координаты

которых удовлетворяют уравнению вида:

в котором, по крайней мере один из коэффициентов a 11 , a 12 , a 22 не равен нулю.

Инварианты кривых второго порядка.

Вид кривой зависим от 4 инвариантов , приведенных ниже:

Инварианты относительно поворота и сдвига системы координат:

Инвариант относительно поворота системы координат (полуинвариант ):

Для изучения кривых второго порядка рассматриваем произведение А*С.

Общее уравнение кривой второго порядка выглядит так:

Ax 2 +2Bxy+Cy 2 +2Dx+2Ey+F=0

Если А*С > 0 эллиптического типа . Любое эллиптическое

уравнение - это уравнение или обычного эллипса, или же вырожденного эллипса (точки), или мнимого

эллипса (в таком случае уравнение не определяет на плоскости ни одного геометрического образа);

Если А*С < 0 , то уравнение принимает вид уравнения гиперболического типа . Любое гиперболическое

уравнение выражает или простую гиперболу, или вырожденную гиперболу (две пересекающиеся прямые);

Если А*С = 0 , то линия второго порядка не будет центральной. Уравнения такого типа называют

уравнениями параболического типа и выражают на плоскости или простую параболу , или 2 параллельных

(либо совпадающих) прямых, или не выражают на плоскости ни одного геометрического образа;

Если А*С ≠ 0 , кривая второго порядка будет

Если на плоскости введена ПДСК, то всякое уравнение первой степени относительно текущих координат и

, (5)

где иодновременно не равны нулю, определяет прямую.

Верно и обратное утверждение: в ПДСК любая прямая может быть задана уравнением первой степени вида (5).

Уравнение вида (5) называется общим уравнением прямой .

Частные случаи уравнения (5) приведены в следующей таблице.

Значении коэффициентов

Уравнение прямой

Положение прямой

Прямая проходит через начало координат

Прямая параллельна оси

Прямая параллельна оси

Прямая совпадает с осью

Прямая совпадает с осью

    Уравнение прямой с угловым коэффициентом и начальной ординатой.

Углом наклона прямой к оси
называется наименьший угол
, на который нужно повернуть против часовой стрелки ось абсцисс до её совпадения с данной прямой (Рис.6). Направление любой прямой характеризуется еёугловым коэффициентом , который определяется как тангенс угла наклона
этой прямой, т. е.

.

Исключение составляет только прямая, перпендикулярная оси
, которая не имеет углового коэффициента.

Уравнение прямой, имеющей угловой коэффициент и пересекающей ось
в точке, ордината которой равна(начальная ордината)
, записывается в виде

.

    Уравнение прямой в отрезках

Уравнением прямой в отрезках называется уравнение вида

, (6)

где и
соответственно длины отрезков, отсекаемых прямой на координатных осях, взятые с определёнными знаками.

    Уравнение прямой, проходящей через данную точку в данном направлении. Пучок прямых

Уравнение прямой, проходящей через данную точку
и имеющей угловой коэффициент
записывается в виде

. (7)

Пучком прямых называется совокупность прямых плоскости, проходящих через одну и точку
центр пучка. Если известны координаты центра пучка, то уравнение (8) можно рассматривать как уравнение пучка, поскольку любая прямая пучка может быть получена из уравнения (8) при соответствующем значении углового коэффициента(исключение составляет прямая, которая параллельна оси
её уравнение
).

Если известны общие уравнения двух прямых, принадлежащих пучку
и(образующих пучка), то уравнении любой прямой из этого пучка можно записать в виде

    Уравнение прямой, проходящей через две точки

Уравнение прямой, проходящей через две данные точки
и
, имеет вид

.

Если точки
и
определяют прямую, параллельную оси

или оси

, то уравнение такой прямой записывается соответственно в виде

или
.

    Взаимное расположение двух прямых. Угол между прямыми. Условие параллельности. Условие перпендикулярности

Взаимное расположение двух прямых, заданных общими уравнениями

и ,

представлено в следующей таблице.

Под углом между двумя прямыми понимается один из смежных углов, образованных при их пересечении. Острый угол между прямыми
м
, определяется формулой

.

Заметим, что если хотя бы одна из данных прямых параллельна оси
, то формула (11) не имеет смысла, поэтому будем использовать общие уравнения прямых

и .

формула (11) примет вид

.

Условие параллельности:

или
.

Условие перпендикулярности:

или
.

    Нормальное уравнение прямой. Расстояние точки от прямой. Уравнения биссектрис

Нормальное уравнение прямой имеет вид

где
длина перпендикуляра (нормали), опущенного из начала координат на прямую,
угол наклона этого перпендикуляра к оси
. Чтобы привести общее уравнение прямой
к нормальному виду, нужно обе части равенства (12) умножить нанормирующий множитель
, взятый со знаком противоположным знаку свободного члена.

Расстояние точки
от прямой
найдём по формулам

. (9)

Уравнение биссектрис углов между прямыми
и
:

.

Задача 16. Дана прямая
. Составить уравнение прямой, проходящей через точку
параллельно данной прямой.

Решение. По условию параллельности прямых
. Для решения задачи будем использовать уравнение прямой, проходящей через данную точку
в данном направлении (8):

.

Найдём угловой коэффициент данной прямой. Для этого от общего уравнения прямой (5) перейдём к уравнению с угловым коэффициентом (6) (выразим через):

Следовательно,
.

Задача 17 . Найти точку
, симметричную точке
, относительно прямой
.

Решение. Для того, чтобы найти точку симметричную точке относительно прямой(Рис.7) необходимо:

1) опустить из точки на прямуюперпендикуляр,

2) найти основание этого перпендикуляра
точку,

3) на продолжении перпендикуляра отложить отрезок
.

Итак, запишем уравнение прямой, проходящей через точку перпендикулярно данной прямой. Для этого воспользуемся уравнением прямой, проходящей через данную точку в данном направлении (8):

.

Подставим координаты точки
:

. (11)

Угловой коэффициент найдём из условия перпендикулярности прямых:

.

Угловой коэффициент данной прямой

,

следовательно, угловой коэффициент перпендикулярной прямой

.

Подставим его в уравнение (11):

Далее, найдём точку
точку пересечения данной прямой и ей перпендикулярной прямой. Так как точкапринадлежит обеим прямым, то её координаты удовлетворяют их уравнениям. Значит, для отыскания координат точки пересечения требуется решить систему уравнений, составленную из уравнений этих прямых:

Решение системы
,
, т. е.
.

Точка является серединой отрезка
, тогда из формул (4):

,
,

найдём координаты точки
:

Таким образом, искомая точка
.

Задача 18 .Составить уравнение прямой, которая проходит через точку
и отсекает от координатного угла треугольник с площадью, равной 150 кв.ед. (Рис.8).

Решение . Для решения задачи будем использовать уравнение прямой «в отрезках» (7):

. (12)

Так как точка
лежит на искомой прямой, то её координаты должны удовлетворять уравнению этой прямой:

.

Площадь треугольника, отсекаемого прямой от координатного угла вычисляется по формуле:

(записан модуль, так как имогут быть отрицательными).

Таким образом, получили систему для отыскания параметров и:

Эта система равносильна двум системам:


Решение первой системы
,
и
,
.

Решение второй системы
,
и
,
.

Подставим найденные значения в уравнение (12):

,
,
,
.

Запишем общие уравнения этих прямых:

,
,
,
.

Задача 19 . Вычислить расстояние между параллельными прямыми
и
.

Решение. Расстояние между параллельными прямыми равно расстоянию произвольной точки одной прямой до второй прямой.

Выберем на прямой точку
произвольно, следовательно, можно задать одну координату, т. е. например
, тогда
.

Теперь найдём расстояние точки до прямойпо формуле (10):

.

Таким образом, расстояние между данными параллельными прямыми равно.

Задача 20. Найти уравнение прямой, проходящей через точку пересечения прямых
и
(не находя точки пересечения) и


Решение . 1) Запишем уравнение пучка прямых с известными образующими (9):

Тогда искомая прямая имеет уравнение

Требуется найти такие значения
и, при которых прямая пучка пройдёт через точку
, т. е. её координаты должны удовлетворять уравнению (13):

Подставим найденное
в уравнение (13) и после упрощении получим искомую прямую:

.

.

Воспользуемся условием параллельности прямых:
. Найдём угловые коэффициенты прямыхи. Имеем, что
,
.

Следовательно,

Подставим найденное значение
в уравнение (13) и упростим, получим уравнение искомой прямой
.

Задачи для самостоятельного решения.

Задача 21. Составить уравнение прямой, проходящей через точки
и
: 1) с угловым коэффициентом; 2) общее; 3) «в отрезках».

Задача 22. Составить уравнение прямой, которая проходит через точку и образует с осью
угол
, если 1)
,
; 2)
,
.

Задача 23. Написать уравнения сторон ромба с диагоналями 10 см и 6 см, приняв большую диагональ за ось
, а меньшую
за ось
.

Задача 24. Равносторонний треугольник
со стороной, равной 2 единицам, расположен так, как показано на рисунке 9. составить уравнения его сторон.

Задача 25 . Через точку
провести прямую, отсекающую на положительных полуосях координат равные отрезки.

Задача 26 . Найти площадь треугольника, который отсекает от координатного угла прямая:

1)
; 2)
.

Задача 27 .Написать уравнение прямой, проходящей через точку и отсекающей от координатного угла треугольник площадью, равной, если

1)
,
кв. ед.; 2)
,
кв. ед.

Задача 28. Даны вершины треугольника
. Найти уравнение средней линии, параллельной стороне
, если