У дробей бывают различные или одинаковые знаменатели. Одинаковый знаменатель или по-другому называют общий знаменатель у дроби. Пример общего знаменателя:

\(\frac{17}{5}, \frac{1}{5}\)

Пример разных знаменателей у дробей:

\(\frac{8}{3}, \frac{2}{13}\)

Как привести к общему знаменателю дроби?

У первой дроби знаменатель равен 3, у второй равен 13. Нужно найти такое число, чтобы делилось и на 3 и на 13. Это число 39.

Первую дробь нужно умножить на дополнительный множитель 13. Чтобы дробь не изменилась умножаем обязательно и числитель на 13 и знаменатель.

\(\frac{8}{3} = \frac{8 \times \color{red} {13}}{3 \times \color{red} {13}} = \frac{104}{39}\)

Вторую дробь умножаем на дополнительный множитель 3.

\(\frac{2}{13} = \frac{2 \times \color{red} {3}}{13 \times \color{red} {3}} = \frac{6}{39}\)

Мы привели к общему знаменателю дроби:

\(\frac{8}{3} = \frac{104}{39}, \frac{2}{13} = \frac{6}{39}\)

Наименьший общий знаменатель.

Рассмотрим еще пример:

Приведем дроби \(\frac{5}{8}\) и \(\frac{7}{12}\) к общему знаменателю.

Общий знаменатель для чисел 8 и 12 могут быть числа 24, 48, 96, 120, …, принято выбирать наименьший общий знаменатель в нашем случае это число 24.

Наименьший общий знаменатель – это наименьшее число, на которое делиться знаменатель первой и второй дроби.

Как найти наименьший общий знаменатель?
Методом перебора чисел, на которое делиться знаменатель первой и второй дроби и выбрать из них самое наименьшее.

Нам нужно дробь со знаменателем 8 умножить на 3, а дробь со знаменателем 12 умножить на 2.

\(\begin{align}&\frac{5}{8} = \frac{5 \times \color{red} {3}}{8 \times \color{red} {3}} = \frac{15}{24}\\\\&\frac{7}{12} = \frac{7 \times \color{red} {2}}{12 \times \color{red} {2}} = \frac{14}{24}\\\\ \end{align}\)

Если у вас сразу не получиться привести дроби к наименьшему общему знаменателю в этом ничего страшного нет, в дальнейшем решая пример вам может быть придется полученный ответ

Общей знаменатель можно найти для любых двух дробей это может быть произведение знаменателей этих дробей.

Например:
Приведите дроби \(\frac{1}{4}\) и \(\frac{9}{16}\) к наименьшему общему знаменателю.

Самый простой способ найти общий знаменатель – это произведение знаменателей 4⋅16=64. Число 64 это не наименьший общий знаменатель. По заданию нужно найти именно наименьший общий знаменатель. Поэтому ищем дальше. Нам нужно число, которое делиться и на 4, и на 16, это число 16. Приведем к общему знаменателю дроби, умножим дробь со знаменателем 4 на 4, а дробь со знаменателем 16 на единицу. Получим:

\(\begin{align}&\frac{1}{4} = \frac{1 \times \color{red} {4}}{4 \times \color{red} {4}} = \frac{4}{16}\\\\&\frac{9}{16} = \frac{9 \times \color{red} {1}}{16 \times \color{red} {1}} = \frac{9}{16}\\\\ \end{align}\)

Как привести алгебраические (рациональные) дроби к общему знаменателю?

1) Если в знаменателях дробей стоят многочлены, нужно попытаться одним из известных способов.

2) Наименьший общий знаменатель (НОЗ) состоит из всех множителей, взятых в наибольшей степени.

Наименьший общий знаменатель для чисел устно ищем как наименьшее число, которое делится на остальные числа.

3) Чтобы найти дополнительный множитель к каждой дроби, надо новый знаменатель разделить на старый.

4) Числитель и знаменатель первоначальной дроби умножаем на дополнительный множитель.

Рассмотрим примеры приведения алгебраических дробей к общему знаменателю.

Чтобы найти общий знаменатель для чисел, выбираем большее число и проверяем, делится ли оно на меньшее. 15 на 9 не делится. Умножаем 15 на 2 и проверяем, делится ли полученное число на 9. 30 на 9 не делится. Умножаем 15 на 3 и проверяем, делится ли полученное число на 9. 45 на 9 делится, значит, общий знаменатель для чисел равен 45.

Наименьший общий знаменатель состоит из всех множителей, взятых в наибольшей степени. Таким образом, общий знаменатель данных дробей равен 45 bc (буквы принято записывать в алфавитном порядке).

Чтобы найти дополнительный множитель к каждой дроби, надо новый знаменатель разделить на старый. 45bc:(15b)=3c, 45bc:(9c)=5b. Умножаем числитель и знаменатель каждой дроби на дополнительный множитель:

Сначала ищем общий знаменатель для чисел: 8 на 6 не делится, 8∙2=16 на 6 не делится, 8∙3=24 на 6 делится. Каждую из переменных нужно включить в общий знаменатель один раз. Из степеней берем степень с большим показателем.

Таким образом, общий знаменатель данных дробей равен 24a³bc.

Чтобы найти дополнительный множитель к каждой дроби, нужно новый знаменатель разделить на старый: 24a³bc:(6a³c)=4b, 24a³bc:(8a²bc)=3a.

Дополнительный множитель умножаем на числитель и знаменатель:

Многочлены, стоящие в знаменателях данных дробей, нужно . В знаменателе первой дроби — полный квадрат разности: x²-18x+81=(x-9)²; в знаменателе второй — разность квадратов: x²-81=(x-9)(x+9):

Общий знаменатель состоит из всех множителей, взятых в наибольшей степени, то есть равен (x-9)²(x+9). Находим дополнительные множители и умножаем их на числитель и знаменатель каждой дроби:

Изначально я хотел включить методы приведения к общему знаменателю в параграф «Сложение и вычитание дробей». Но информации оказалось так много, а важность ее столь велика (ведь общие знаменатели бывают не только у числовых дробей), что лучше изучить этот вопрос отдельно.

Итак, пусть у нас есть две дроби с разными знаменателями. А мы хотим сделать так, чтобы знаменатели стали одинаковыми. На помощь приходит основное свойство дроби, которое, напомню, звучит следующим образом:

Дробь не изменится, если ее числитель и знаменатель умножить на одно и то же число, отличное от нуля.

Таким образом, если правильно подобрать множители, знаменатели у дробей сравняются - этот процесс называется приведением к общему знаменателю. А искомые числа, «выравнивающие» знаменатели, называются дополнительными множителями.

Для чего вообще надо приводить дроби к общему знаменателю? Вот лишь несколько причин:

  1. Сложение и вычитание дробей с разными знаменателями. По-другому эту операцию никак не выполнить;
  2. Сравнение дробей. Иногда приведение к общему знаменателю значительно упрощает эту задачу;
  3. Решение задач на доли и проценты. Процентные соотношения являются, по сути, обыкновенными выражениями, которые содержат дроби.

Есть много способов найти числа, при умножении на которые знаменатели дробей станут равными. Мы рассмотрим лишь три из них - в порядке возрастания сложности и, в некотором смысле, эффективности.

Умножение «крест-накрест»

Самый простой и надежный способ, который гарантированно выравнивает знаменатели. Будем действовать «напролом»: умножаем первую дробь на знаменатель второй дроби, а вторую - на знаменатель первой. В результате знаменатели обеих дробей станут равными произведению исходных знаменателей. Взгляните:

В качестве дополнительных множителей рассмотрим знаменатели соседних дробей. Получим:

Да, вот так все просто. Если вы только начинаете изучать дроби, лучше работайте именно этим методом - так вы застрахуете себя от множества ошибок и гарантированно получите результат.

Единственный недостаток данного метода - приходится много считать, ведь знаменатели умножаются «напролом», и в результате могут получиться очень большие числа. Такова расплата за надежность.

Метод общих делителей

Этот прием помогает намного сократить вычисления, но, к сожалению, применяется он достаточно редко. Метод заключается в следующем:

  1. Прежде, чем действовать «напролом» (т.е. методом «крест-накрест»), взгляните на знаменатели. Возможно, один из них (тот, который больше), делится на другой.
  2. Число, полученное в результате такого деления, будет дополнительным множителем для дроби с меньшим знаменателем.
  3. При этом дробь с большим знаменателем вообще не надо ни на что умножать - в этом и заключается экономия. Заодно резко снижается вероятность ошибки.

Задача. Найдите значения выражений:

Заметим, что 84: 21 = 4; 72: 12 = 6 . Поскольку в обоих случаях один знаменатель делится без остатка на другой, применяем метод общих множителей. Имеем:

Заметим, что вторая дробь вообще нигде ни на что не умножалась. Фактически, мы сократили объем вычислений в два раза!

Кстати, дроби в этом примере я взял не случайно. Если интересно, попробуйте сосчитать их методом «крест-накрест». После сокращения ответы получатся такими же, но работы будет намного больше.

В этом и состоит сила метода общих делителей, но, повторюсь, применять его можно лишь в том случае, когда один из знаменателей делится на другой без остатка. Что бывает достаточно редко.

Метод наименьшего общего кратного

Когда мы приводим дроби к общему знаменателю, мы по сути пытаемся найти такое число, которое делится на каждый из знаменателей. Затем приводим к этому числу знаменатели обеих дробей.

Таких чисел очень много, и наименьшее из них совсем не обязательно будет равняться прямому произведению знаменателей исходных дробей, как это предполагается в методе «крест-накрест».

Например, для знаменателей 8 и 12 вполне подойдет число 24, поскольку 24: 8 = 3; 24: 12 = 2 . Это число намного меньше произведения 8 · 12 = 96 .

Наименьшее число, которое делится на каждый из знаменателей, называется их наименьшим общим кратным (НОК).

Обозначение: наименьшее общее кратное чисел a и b обозначается НОК(a ; b ) . Например, НОК(16; 24) = 48 ; НОК(8; 12) = 24 .

Если вам удастся найти такое число, итоговый объем вычислений будет минимальным. Посмотрите на примеры:

Задача. Найдите значения выражений:

Заметим, что 234 = 117 · 2; 351 = 117 · 3 . Множители 2 и 3 взаимно просты (не имеют общих делителей, кроме 1), а множитель 117 - общий. Поэтому НОК(234; 351) = 117 · 2 · 3 = 702.

Аналогично, 15 = 5 · 3; 20 = 5 · 4 . Множители 3 и 4 взаимно просты, а множитель 5 - общий. Поэтому НОК(15; 20) = 5 · 3 · 4 = 60.

Теперь приведем дроби к общим знаменателям:

Обратите внимание, насколько полезным оказалось разложение исходных знаменателей на множители:

  1. Обнаружив одинаковые множители, мы сразу вышли на наименьшее общее кратное, что, вообще говоря, является нетривиальной задачей;
  2. Из полученного разложения можно узнать, каких множителей «не хватает» каждой из дробей. Например, 234 · 3 = 702 , следовательно, для первой дроби дополнительный множитель равен 3.

Чтобы оценить, насколько колоссальный выигрыш дает метод наименьшего общего кратного, попробуйте вычислить эти же примеры методом «крест-накрест». Разумеется, без калькулятора. Думаю, после этого комментарии будут излишними.

Не думайте, что таких сложных дробей в настоящих примерах не будет. Они встречаются постоянно, и приведенные выше задачи - не предел!

Единственная проблема - как найти этот самый НОК. Иногда все находится за несколько секунд, буквально «на глаз», но в целом это сложная вычислительная задача, требующая отдельного рассмотрения. Здесь мы не будем этого касаться.

На этом уроке мы рассмотрим приведение дробей к общему знаменателю и решим задачи по этой теме. Дадим определение понятию общего знаменателя и дополнительного множителя, вспомним о взаимно простых числах. Дадим определение понятию наименьший общий знаменатель (НОЗ) и решим ряд задач на его нахождение.

Тема: Сложение и вычитание дробей с разными знаменателями

Урок: Приведение дробей к общему знаменателю

Повторение. Основное свойство дроби.

Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.

Например, числитель и знаменатель дроби можно разделить на 2. Получим дробь . Эту операцию называют сокращением дроби. Можно выполнить и обратное преобразование, умножив числитель и знаменатель дроби на 2. В этом случае говорят, что мы привели дробь к новому знаменателю. Число 2 называют дополнительным множителем.

Вывод. Дробь можно привести к любому знаменателю кратному знаменателю данной дроби. Для того чтобы привести дробь к новому знаменателю, ее числитель и знаменатель умножают на дополнительный множитель.

1. Приведите дробь к знаменателю 35.

Число 35 кратно 7, то есть 35 делится на 7 без остатка. Значит, это преобразование возможно. Найдем дополнительный множитель. Для этого разделим 35 на 7. Получим 5. Умножим на 5 числитель и знаменатель исходной дроби.

2. Приведите дробь к знаменателю 18.

Найдем дополнительный множитель. Для этого разделим новый знаменатель на исходный. Получим 3. Умножим на 3 числитель и знаменатель данной дроби.

3. Приведите дробь к знаменателю 60.

Разделив 60 на 15, получим дополнительный множитель. Он равен 4. Умножим числитель и знаменатель на 4.

4. Приведите дробь к знаменателю 24

В несложных случаях приведение к новому знаменателю выполняют в уме. Принято только указывать дополнительный множитель за скобочкой чуть правее и выше исходной дроби.

Дробь можно привести к знаменателю 15 и дробь можно привести к знаменателю 15. У дробей и общий знаменатель 15.

Общим знаменателем дробей может быть любое общее кратное их знаменателей. Для простоты дроби приводят к наименьшему общему знаменателю. Он равен наименьшему общему кратному знаменателей данных дробей.

Пример. Привести к наименьшему общему знаменателю дроби и .

Сначала найдем наименьшее общее кратное знаменателей данных дробей. Это число 12. Найдем дополнительный множитель для первой и для второй дроби. Для этого 12 разделим на 4 и на 6. Три - это дополнительный множитель для первой дроби, а два - для второй. Приведем дроби к знаменателю 12.

Мы привели дроби и к общему знаменателю, то есть мы нашли равные им дроби, у которых один и тот же знаменатель.

Правило. Чтобы привести дроби к наименьшему общему знаменателю, надо

Во-первых, найти наименьшее общее кратное знаменателей этих дробей, оно и будет их наименьшим общим знаменателем;

Во-вторых, разделить наименьший общий знаменатель на знаменатели данных дробей, т. е. найти для каждой дроби дополнительный множитель.

В-третьих, умножить числитель и знаменатель каждой дроби на ее дополнительный множитель.

а) Привести к общему знаменателю дроби и .

Наименьший общий знаменатель равен 12. Дополнительный множитель для первой дроби - 4, для второй - 3. Приводим дроби к знаменателю 24.

б) Привести к общему знаменателю дроби и .

Наименьший общий знаменатель равен 45. Разделив 45 на 9 на 15, получим, соответственно, 5 и 3. Приводим дроби к знаменателю 45.

в) Привести к общему знаменателю дроби и .

Общий знаменатель - 24. Дополнительные множители, соответственно, - 2 и 3.

Иногда бывает трудно подобрать устно наименьшее общее кратное для знаменателей данных дробей. Тогда общий знаменатель и дополнительные множители находят с помощью разложения на простые множители.

Привести к общему знаменателю дроби и .

Разложим числа 60 и 168 на простые множители. Выпишем разложение числа 60 и добавим недостающие множители 2 и 7 из второго разложения. Умножим 60 на 14 и получим общий знаменатель 840. Дополнительный множитель для первой дроби - это 14. Дополнительный множитель для второй дроби - 5. Приведем дроби к общему знаменателю 840.

Список литературы

1. Виленкин Н.Я., Жохов В.И., Чесноков А.С. и др. Математика 6. - М.: Мнемозина, 2012.

2. Мерзляк А.Г., Полонский В.В., Якир М.С. Математика 6 класс. - Гимназия, 2006.

3. Депман И.Я., Виленкин Н.Я. За страницами учебника математики. - Просвещение, 1989.

4. Рурукин А.Н., Чайковский И.В. Задания по курсу математика 5-6 класс. - ЗШ МИФИ, 2011.

5. Рурукин А.Н., Сочилов С.В., Чайковский К.Г. Математика 5-6. Пособие для учащихся 6-х классов заочной школы МИФИ. - ЗШ МИФИ, 2011.

6. Шеврин Л.Н., Гейн А.Г., Коряков И.О. и др. Математика: Учебник-собеседник для 5-6 классов средней школы. Библиотека учителя математики. - Просвещение, 1989.

Можно скачать книги, указанные в п.1.2. данного урока.

Домашнее задание

Виленкин Н.Я., Жохов В.И., Чесноков А.С. и др. Математика 6. - М.: Мнемозина, 2012. (ссылка см. 1.2)

Домашнее задание: №297, №298, №300.

Другие задания: №270, №290

На этом уроке мы рассмотрим приведение дробей к общему знаменателю и решим задачи по этой теме. Дадим определение понятию общего знаменателя и дополнительного множителя, вспомним о взаимно простых числах. Дадим определение понятию наименьший общий знаменатель (НОЗ) и решим ряд задач на его нахождение.

Тема: Сложение и вычитание дробей с разными знаменателями

Урок: Приведение дробей к общему знаменателю

Повторение. Основное свойство дроби.

Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.

Например, числитель и знаменатель дроби можно разделить на 2. Получим дробь . Эту операцию называют сокращением дроби. Можно выполнить и обратное преобразование, умножив числитель и знаменатель дроби на 2. В этом случае говорят, что мы привели дробь к новому знаменателю. Число 2 называют дополнительным множителем.

Вывод. Дробь можно привести к любому знаменателю кратному знаменателю данной дроби. Для того чтобы привести дробь к новому знаменателю, ее числитель и знаменатель умножают на дополнительный множитель.

1. Приведите дробь к знаменателю 35.

Число 35 кратно 7, то есть 35 делится на 7 без остатка. Значит, это преобразование возможно. Найдем дополнительный множитель. Для этого разделим 35 на 7. Получим 5. Умножим на 5 числитель и знаменатель исходной дроби.

2. Приведите дробь к знаменателю 18.

Найдем дополнительный множитель. Для этого разделим новый знаменатель на исходный. Получим 3. Умножим на 3 числитель и знаменатель данной дроби.

3. Приведите дробь к знаменателю 60.

Разделив 60 на 15, получим дополнительный множитель. Он равен 4. Умножим числитель и знаменатель на 4.

4. Приведите дробь к знаменателю 24

В несложных случаях приведение к новому знаменателю выполняют в уме. Принято только указывать дополнительный множитель за скобочкой чуть правее и выше исходной дроби.

Дробь можно привести к знаменателю 15 и дробь можно привести к знаменателю 15. У дробей и общий знаменатель 15.

Общим знаменателем дробей может быть любое общее кратное их знаменателей. Для простоты дроби приводят к наименьшему общему знаменателю. Он равен наименьшему общему кратному знаменателей данных дробей.

Пример. Привести к наименьшему общему знаменателю дроби и .

Сначала найдем наименьшее общее кратное знаменателей данных дробей. Это число 12. Найдем дополнительный множитель для первой и для второй дроби. Для этого 12 разделим на 4 и на 6. Три - это дополнительный множитель для первой дроби, а два - для второй. Приведем дроби к знаменателю 12.

Мы привели дроби и к общему знаменателю, то есть мы нашли равные им дроби, у которых один и тот же знаменатель.

Правило. Чтобы привести дроби к наименьшему общему знаменателю, надо

Во-первых, найти наименьшее общее кратное знаменателей этих дробей, оно и будет их наименьшим общим знаменателем;

Во-вторых, разделить наименьший общий знаменатель на знаменатели данных дробей, т. е. найти для каждой дроби дополнительный множитель.

В-третьих, умножить числитель и знаменатель каждой дроби на ее дополнительный множитель.

а) Привести к общему знаменателю дроби и .

Наименьший общий знаменатель равен 12. Дополнительный множитель для первой дроби - 4, для второй - 3. Приводим дроби к знаменателю 24.

б) Привести к общему знаменателю дроби и .

Наименьший общий знаменатель равен 45. Разделив 45 на 9 на 15, получим, соответственно, 5 и 3. Приводим дроби к знаменателю 45.

в) Привести к общему знаменателю дроби и .

Общий знаменатель - 24. Дополнительные множители, соответственно, - 2 и 3.

Иногда бывает трудно подобрать устно наименьшее общее кратное для знаменателей данных дробей. Тогда общий знаменатель и дополнительные множители находят с помощью разложения на простые множители.

Привести к общему знаменателю дроби и .

Разложим числа 60 и 168 на простые множители. Выпишем разложение числа 60 и добавим недостающие множители 2 и 7 из второго разложения. Умножим 60 на 14 и получим общий знаменатель 840. Дополнительный множитель для первой дроби - это 14. Дополнительный множитель для второй дроби - 5. Приведем дроби к общему знаменателю 840.

Список литературы

1. Виленкин Н.Я., Жохов В.И., Чесноков А.С. и др. Математика 6. - М.: Мнемозина, 2012.

2. Мерзляк А.Г., Полонский В.В., Якир М.С. Математика 6 класс. - Гимназия, 2006.

3. Депман И.Я., Виленкин Н.Я. За страницами учебника математики. - Просвещение, 1989.

4. Рурукин А.Н., Чайковский И.В. Задания по курсу математика 5-6 класс. - ЗШ МИФИ, 2011.

5. Рурукин А.Н., Сочилов С.В., Чайковский К.Г. Математика 5-6. Пособие для учащихся 6-х классов заочной школы МИФИ. - ЗШ МИФИ, 2011.

6. Шеврин Л.Н., Гейн А.Г., Коряков И.О. и др. Математика: Учебник-собеседник для 5-6 классов средней школы. Библиотека учителя математики. - Просвещение, 1989.

Можно скачать книги, указанные в п.1.2. данного урока.

Домашнее задание

Виленкин Н.Я., Жохов В.И., Чесноков А.С. и др. Математика 6. - М.: Мнемозина, 2012. (ссылка см. 1.2)

Домашнее задание: №297, №298, №300.

Другие задания: №270, №290